더북(TheBook)

1.1.4 딥러닝에서 ‘딥’이란 무엇일까?

 

딥러닝은 머신 러닝의 특정한 한 분야로서 연속된 (layer)에서 점진적으로 의미 있는 표현을 배우는 데 강점이 있으며, 데이터로부터 표현을 학습하는 새로운 방식입니다. 딥러닝(deep)이란 단어가 어떤 깊은 통찰을 얻을 수 있다는 것을 의미하지는 않습니다. 그냥 연속된 층으로 표현을 학습한다는 개념을 나타냅니다. 데이터로부터 모델을 만드는 데 얼마나 많은 층을 사용했는지가 그 모델의 깊이가 됩니다. 이 분야에 대한 적절한 다른 이름은 층 기반 표현 학습(layered representations learning) 또는 계층적 표현 학습(hierarchical representations learning)이 될 수 있습니다. 최근의 딥러닝 모델은 표현 학습을 위해 수십 개, 수백 개의 연속된 층을 가지고 있습니다. 이 층들을 모두 훈련 데이터에 노출해서 자동으로 학습시킵니다. 한편 다른 머신 러닝 접근 방법은 1~2개의 데이터 표현 층을 학습하는 경향이 있습니다. 그래서 이런 방식을 얕은 학습(shallow learning)이라 부르기도 합니다.

신간 소식 구독하기
뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.