더북(TheBook)

1.2.6 딥러닝의 특징

 

딥러닝이 이렇게 빠르게 확산된 주된 이유는 많은 문제에서 더 좋은 성능을 내고 있기 때문입니다. 하지만 그것뿐만이 아닙니다. 딥러닝은 머신 러닝에서 가장 중요한 단계인 특성 공학을 완전히 자동화하기 때문에 문제를 더 해결하기 쉽게 만들어 줍니다.

얕은 학습인 이전의 머신 러닝 기법은 입력 데이터를 고차원 비선형 투영(SVM)이나 결정 트리 같은 간단한 변환을 통해 하나 또는 2개의 연속된 표현 공간으로만 변환합니다. 하지만 복잡한 문제에 필요한 잘 정제된 표현은 일반적으로 이런 방식으로 얻지 못합니다. 이런 머신 러닝 방법들로 처리하기 용이하게 사람이 초기 입력 데이터를 여러 방식으로 변환해야 합니다. 즉 데이터의 좋은 표현을 수동으로 만들어야 합니다. 이를 특성 공학(feature engineering)이라고 합니다. 그에 반해 딥러닝은 이 단계를 완전히 자동화합니다. 딥러닝을 사용하면 특성을 직접 찾는 대신 한 번에 모든 특성을 학습할 수 있습니다. 머신 러닝 작업 흐름을 매우 단순화시켜 주므로 고도의 다단계 작업 과정을 하나의 간단한 엔드-투-엔드(end-to-end) 딥러닝 모델로 대체할 수 있습니다.

신간 소식 구독하기
뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.