더북(TheBook)

2.3.6 딥러닝의 기하학적 해석

 

신경망은 전체적으로 텐서 연산의 연결로 구성된 것이고, 모든 텐서 연산은 입력 데이터의 기하학적 변환임을 배웠습니다. 단순한 단계들이 길게 이어져 구현된 신경망을 고차원 공간에서 매우 복잡한 기하학적 변환을 하는 것으로 해석할 수 있습니다.

3D라면 다음 비유가 이해하는 데 도움이 될 것입니다. 하나는 빨간색이고 다른 하나는 파란색인 2개의 색종이가 있다고 가정합시다. 두 장을 겹친 다음 뭉쳐서 작은 공으로 만듭니다. 이 종이 공이 입력 데이터고 색종이는 분류 문제의 데이터 클래스입니다. 신경망(또는 다른 머신 러닝 알고리즘)이 해야 할 일은 종이 공을 펼쳐서 두 클래스가 다시 깔끔하게 분리되는 변환을 찾는 것입니다. 손가락으로 종이 공을 조금씩 펼치는 것처럼 딥러닝을 사용하여 3D 공간에서 간단한 변환들을 연결해서 이를 구현합니다.

▲ 그림 2-9 복잡한 데이터의 매니폴드(manifold)24 펼치기

 

24 역주 매니폴드는 국부적으로는 저차원의 유클리디안 거리로 볼 수 있는 고차원 공간을 말합니다. 이 그림에서 뭉쳐진 종이 공이 2차원 매니폴드의 한 예입니다.

신간 소식 구독하기
뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.