더북(TheBook)

이와 같이 정답값과 예측값의 차이를 구한 후 이 값을 모두 더하면 인공지능의 오차값이 계산됩니다. 물론 실제 오차값을 구할 때는 이렇게 단순한 방법으로 계산하지 않습니다.

TIP

평균 제곱 오차(mean squared error)가 바로 이러한 방법 중 하나입니다. 평균 제곱 오차는 예측값이 실젯값에서 얼마나 떨어져 있는지 알아보는 방법입니다. 이때 생기는 오차를 제곱하기 때문에 평균 제곱 오차라고 합니다. 제곱하는 이유는 바로 부호를 없애기 위해서입니다. 양(+)의 방향으로 떨어져 있는지 음(-)의 방향으로 떨어져 있는지는 중요하지 않습니다. 중요한 것은 바로 얼마나 떨어져 있느냐죠. 이를 명확하게 나타내기 위해 제곱하는 것입니다. 음(-)을 제곱하면 양수(+)가 되기 때문이지요.

icon_chap 실제로 인공 신경망으로 인공지능을 만들 때 이 방식으로 오차값을 구하나요?

원리는 동일합니다. 하지만 실제 오차값을 계산할 때는 여러 공식을 사용합니다. 정답은 없지만, 어떤 공식을 사용하는가에 따라서 인공지능의 성능 또한 달라집니다. 그러므로 데이터에 적합한 오차 공식을 구하는 것이 필요합니다.

더 궁금하다면 <케라스 창시자에게 배우는 딥러닝, 개정2판>(길벗, 2022)을 찾아보세요.

신간 소식 구독하기
뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.