class Model_LSTM(nn.Module):
        def __init__(self, embedding_matrix, num_sub_targets):
            super(Model, self).__init__()
            self.embedding = Embedding(embedding_matrix)
            self.encoder = Encoder(num_sub_targets)
        def forward(self, x):
            x = self.embedding(x)
            out = self.encoder(x)
            return out
    
    crawl_matrix, unknown_words_crawl = build_matrix(
        tokenizer.word_index, CRAWL_EMBEDDING_PATH
    )
    glove_matrix, unknown_words_glove = build_matrix(
        tokenizer.word_index, GLOVE_EMBEDDING_PATH
    )
    
    >>> print("n unknown words (crawl): ", len(unknown_words_crawl))
    >>> print("n unknown words (glove): ", len(unknown_words_glove))
    n unknown words (crawl):  140854
    n unknown words (glove):  143012
    
    embedding_matrix = np.concatenate([crawl_matrix, glove_matrix], axis=-1)
    >>> print(embedding_matrix.shape)
    (416731, 600)
    
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.