더북(TheBook)
>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> from itertools import product
>>> x_min = X_train_std[:, 0].min() - 1
>>> x_max = X_train_std[:, 0].max() + 1
>>> y_min = X_train_std[:, 1].min() - 1
>>> y_max = X_train_std[:, 1].max() + 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
...                      np.arange(y_min, y_max, 0.1))
>>> f, axarr = plt.subplots(nrows=2, ncols=2,
...                         sharex='col',
...                         sharey='row',
...                         figsize=(7, 5))
>>> for idx, clf, tt in zip(product([0, 1], [0, 1]),
...                         all_clf, clf_labels):
...     clf.fit(X_train_std, y_train)
...     Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
...     Z = Z.reshape(xx.shape)
...     axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.3)
...     axarr[idx[0], idx[1]].scatter(X_train_std[y_train==0, 0],
...                                   X_train_std[y_train==0, 1],
...                                   c='blue',
...                                   marker='^',
...                                   s=50)
...     axarr[idx[0], idx[1]].scatter(X_train_std[y_train==1, 0],
...                                   X_train_std[y_train==1, 1],
...                                   c='green',
...                                   marker='o',
...                                   s=50)
...     axarr[idx[0], idx[1]].set_title(tt)
>>> plt.text(-3.5, -4.5,
...          s='Sepal width [standardized]',
...          ha='center', va='center', fontsize=12)
>>> plt.text(-10.5, 4.5,
...          s='Petal length [standardized]',
...          ha='center', va='center',
...          fontsize=12, rotation=90)
>>> plt.show()
신간 소식 구독하기
뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.