>>> mv_clf.get_params()
    {'pipeline-1': Pipeline(steps=[('sc', StandardScaler()),
                            ['clf', LogisticRegression(C=0.001, random_state=1)]]),
     'decisiontreeclassifier': DecisionTreeClassifier(criterion='entropy', max_depth=1, random_state=0),
     'pipeline-2': Pipeline(steps=[('sc', StandardScaler()),
                            ['clf', KNeighborsClassifier(n_neighbors=1)]]),
     'pipeline-1_ _memory': None,
     'pipeline-1_ _steps': [('sc', StandardScaler()),
                            ['clf', LogisticRegression(C=0.001, random_state=1)]],
     'pipeline-1_ _verbose': False,
     'pipeline-1_ _sc': StandardScaler(),
     'pipeline-1_ _clf': LogisticRegression(C=0.001, random_state=1),
     'pipeline-1_ _sc_ _copy': True,
     'pipeline-1_ _sc_ _with_mean': True,
     'pipeline-1_ _sc_ _with_std': True,
     'pipeline-1_ _clf_ _C': 0.001,
     'pipeline-1_ _clf_ _class_weight': None,
     'pipeline-1_ _clf_ _dual': False,
     'pipeline-1_ _clf_ _fit_intercept': True,
     'pipeline-1_ _clf_ _intercept_scaling': 1,
     'pipeline-1_ _clf_ _l1_ratio': None,
     'pipeline-1_ _clf_ _max_iter': 100,
     'pipeline-1_ _clf_ _multi_class': 'auto',
     'pipeline-1_ _clf_ _n_jobs': None,
     'pipeline-1_ _clf_ _penalty': 'l2',
     'pipeline-1_ _clf_ _random_state': 1,
     'pipeline-1_ _clf_ _solver': 'lbfgs',
     'pipeline-1_ _clf_ _tol': 0.0001,
     'pipeline-1_ _clf_ _verbose': 0,
     'pipeline-1_ _clf_ _warm_start': False,
     'decisiontreeclassifier_ _ccp_alpha': 0.0,
     'decisiontreeclassifier_ _class_weight': None,
     'decisiontreeclassifier_ _criterion': 'entropy',
     'decisiontreeclassifier_ _max_depth': 1,
     'decisiontreeclassifier_ _max_features': None,
     'decisiontreeclassifier_ _max_leaf_nodes': None,
     'decisiontreeclassifier_ _min_impurity_decrease': 0.0,
     'decisiontreeclassifier_ _min_impurity_split': None,
     'decisiontreeclassifier_ _min_samples_leaf': 1,
     'decisiontreeclassifier_ _min_samples_split': 2,
     'decisiontreeclassifier_ _min_weight_fraction_leaf': 0.0,
     'decisiontreeclassifier_ _presort': 'deprecated',
     'decisiontreeclassifier_ _random_state': 0,
     'decisiontreeclassifier_ _splitter': 'best',
     'pipeline-2_ _memory': None,
     'pipeline-2_ _steps': [('sc', StandardScaler()),
                            ['clf', KNeighborsClassifier(n_neighbors=1)]],
     'pipeline-2_ _verbose': False,
     'pipeline-2_ _sc': StandardScaler(),
     'pipeline-2_ _clf': KNeighborsClassifier(n_neighbors=1),
     'pipeline-2_ _sc_ _copy': True,
     'pipeline-2_ _sc_ _with_mean': True,
     'pipeline-2_ _sc_ _with_std': True,
     'pipeline-2_ _clf_ _algorithm': 'auto',
     'pipeline-2_ _clf_ _leaf_size': 30,
     'pipeline-2_ _clf_ _metric': 'minkowski',
     'pipeline-2_ _clf_ _metric_params': None,
     'pipeline-2_ _clf_ _n_jobs': None,
     'pipeline-2_ _clf_ _n_neighbors': 1,
     'pipeline-2_ _clf_ _p': 2,
     'pipeline-2_ _clf_ _weights': 'uniform'}
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.