>>> ada_sgd = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
    >>> ada_sgd.fit(X_std, y)
    >>> plot_decision_regions(X_std, y, classifier=ada_sgd)
    >>> plt.title('Adaline - Stochastic gradient descent')
    >>> plt.xlabel('Sepal length [standardized]')
    >>> plt.ylabel('Petal length [standardized]')
    >>> plt.legend(loc='upper left')
    >>> plt.tight_layout()
    >>> plt.show()
    >>> plt.plot(range(1, len(ada_sgd.losses_) + 1), ada_sgd.losses_,
    ...          marker='o')
    >>> plt.xlabel('Epochs')
    >>> plt.ylabel('Average loss')
    >>> plt.tight_layout()
    >>> plt.show()
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.