>>> import matplotlib.pyplot as plt
    >>> import numpy as np
    >>> def gini(p):
    ...     return p*(1 - p) + (1 - p)*(1 - (1-p))
    >>> def entropy(p):
    ...     return - p*np.log2(p) - (1 - p)*np.log2((1 - p))
    >>> def error(p):
    ...     return 1 - np.max([p, 1 - p])
    >>> x = np.arange(0.0, 1.0, 0.01)
    >>> ent = [entropy(p) if p != 0 else None for p in x]
    >>> sc_ent = [e*0.5 if e else None for e in ent]
    >>> err = [error(i) for i in x]
    >>> fig = plt.figure()
    >>> ax = plt.subplot(111)
    >>> for i, lab, ls, c, in zip([ent, sc_ent, gini(x), err],
    ...                           ['Entropy', 'Entropy (scaled)',
    ...                            'Gini impurity',
    ...                            'Misclassification error'],
    ...                           ['-', '-', '--', '-.'],
    ...                           ['black', 'lightgray',
    ...                            'red', 'green', 'cyan']):
    ...     line = ax.plot(x, i, label=lab,
    ...                    linestyle=ls, lw=2, color=c)
    >>> ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15),
    ...           ncol=5, fancybox=True, shadow=False)
    >>> ax.axhline(y=0.5, linewidth=1, color='k', linestyle='--')
    >>> ax.axhline(y=1.0, linewidth=1, color='k', linestyle='--')
    >>> plt.ylim([0, 1.1])
    >>> plt.xlabel('p(i=1)')
    >>> plt.ylabel('impurity index')
    >>> plt.show()
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.