class SBS:
        def __init__(self, estimator, k_features, 
                     scoring=accuracy_score,
                     test_size=0.25, random_state=1):
            self.scoring = scoring
            self.estimator = clone(estimator)
            self.k_features = k_features
            self.test_size = test_size
            self.random_state = random_state
    
        def fit(self, X, y):
            
            X_train, X_test, y_train, y_test = \
                train_test_split(X, y, test_size=self.test_size,
                                 random_state=self.random_state)
    
            dim = X_train.shape[1]
            self.indices_ = tuple(range(dim))
            self.subsets_ = [self.indices_]
            score = self._calc_score(X_train, y_train,
                                     X_test, y_test, self.indices_)
            self.scores_ = [score]
    
            while dim > self.k_features:
                scores = []
                subsets = []
    
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.