>>> from sklearn.ensemble import RandomForestClassifier
>>> feat_labels = df_wine.columns[1:]
>>> forest = RandomForestClassifier(n_estimators=500,
... random_state=1)
>>> forest.fit(X_train, y_train)
>>> importances = forest.feature_importances_
>>> indices = np.argsort(importances)[::-1]
>>> for f in range(X_train.shape[1]):
... print("%2d) %-*s %f" % (f+1, 30,
... feat_labels[indices[f]],
... importances[indices[f]]))
>>> plt.title('Feature Importance')
>>> plt.bar(range(X_train.shape[1]),
... importances[indices],
... align='center')
>>> plt.xticks(range(X_train.shape[1]),
... feat_labels[indices], rotation=90)
>>> plt.xlim([-1, X_train.shape[1]])
>>> plt.tight_layout()
>>> plt.show()
1) Proline 0.185453
2) Flavanoids 0.174751
3) Color intensity 0.143920
4) OD280/OD315 of diluted wines 0.136162
5) Alcohol 0.118529
6) Hue 0.058739