>>> from sklearn.ensemble import RandomForestClassifier
    >>> feat_labels = df_wine.columns[1:]
    >>> forest = RandomForestClassifier(n_estimators=500,
    ...                                 random_state=1)
    >>> forest.fit(X_train, y_train)
    >>> importances = forest.feature_importances_
    >>> indices = np.argsort(importances)[::-1]
    >>> for f in range(X_train.shape[1]):
    ...     print("%2d) %-*s %f" % (f+1, 30,
    ...                             feat_labels[indices[f]],
    ...                             importances[indices[f]]))
    >>> plt.title('Feature Importance')
    >>> plt.bar(range(X_train.shape[1]),
    ...         importances[indices],
    ...         align='center')
    >>> plt.xticks(range(X_train.shape[1]),
    ...            feat_labels[indices], rotation=90)
    >>> plt.xlim([-1, X_train.shape[1]])
    >>> plt.tight_layout()
    >>> plt.show()
     1) Proline                        0.185453
     2) Flavanoids                     0.174751
     3) Color intensity                0.143920
     4) OD280/OD315 of diluted wines   0.136162
     5) Alcohol                        0.118529
     6) Hue                            0.058739
    
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.