3 딥러닝 개괄하기
지금 불러와 실행한 코드는 10장에서 상세히 다루게 될 폐암 수술 환자의 수술 1년 후 생존율을 예측한 모델입니다. 먼저 코드를 개괄적으로 살펴보며 딥러닝을 프로그래밍하는 과정에 대한 감을 잡아 보겠습니다. 단 몇 줄로 이루어진 간략한 코드는 다음과 같이 크게 네 부분으로 나뉘어 있습니다.
1. 환경 준비
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense import numpy as np
딥러닝을 구동하거나 데이터를 다루는 데 필요한 라이브러리들을 불러옵니다.
2. 데이터 준비
!git clone https://github.com/taehojo/data.git = np.loadtxt("./data/ThoraricSurgery3.csv", =",") X = [:,0:16] = [:,16]
준비된 수술 환자 정보 데이터를 나의 구글 코랩 계정에 저장합니다. 해당 파일을 불러와 환자 상태의 기록에 해당하는 부분을 X로, 수술 1년 후 사망/생존 여부를 y로 지정합니다.
3. 구조 결정
30, =16, ='relu')) .add(Dense(1, ='sigmoid'))= Sequential() .add(Dense(
딥러닝 모델의 구조를 결정합니다. 여기에 설정된 대로 딥러닝을 수행합니다.
4. 모델 실행
model.compile('adam', =['accuracy']) = model.fit(X, y, =5, =16)='binary_crossentropy', =
딥러닝 모델을 실행합니다. 앞서 설정된 구조대로 실행하고 결과를 출력합니다.