close
더북(TheBook)
search
모두의 딥러닝 개정 3판
더북(TheBook)
home
Home
첫째 마당 딥러닝 시작을 위한 준비 운동
1장 나의 첫 딥러닝
1 인공지능? 머신 러닝? 딥러닝?
2 딥러닝 실행을 위해 필요한 세 가지
3 구글 코랩 실행하기
2장 딥러닝의 핵심 미리 보기
1 미지의 일을 예측하는 원리
2 딥러닝 코드 실행해 보기
3 딥러닝 개괄하기
4 이제부터가 진짜 딥러닝?
3장 딥러닝을 위한 기초 수학
1 일차 함수, 기울기와 y 절편
2 이차 함수와 최솟값
3 미분, 순간 변화율과 기울기
4 편미분
5 지수와 지수 함수
6 시그모이드 함수
7 로그와 로그 함수
둘째 마당 예측 모델의 기본 원리
4장 가장 훌륭한 예측선
1 선형 회귀의 정의
2 가장 훌륭한 예측선이란?
3 최소 제곱법
4 파이썬 코딩으로 확인하는 최소 제곱
5 평균 제곱 오차
6 파이썬 코딩으로 확인하는 평균 제곱 오차
5장 선형 회귀 모델:먼저 긋고 수정하기
1 경사 하강법의 개요
2 파이썬 코딩으로 확인하는 선형 회귀
3 다중 선형 회귀의 개요
4 파이썬 코딩으로 확인하는 다중 선형 회귀
5 텐서플로에서 실행하는 선형 회귀, 다중 선형 회귀 모델
6장 로지스틱 회귀 모델:참 거짓 판단하기
1 로지스틱 회귀의 정의
2 시그모이드 함수
3 오차 공식
4 로그 함수
5 텐서플로에서 실행하는 로지스틱 회귀 모델
셋째마당 딥러닝의 시작, 신경망
7장 퍼셉트론과 인공지능의 시작
1 인공지능의 시작을 알린 퍼셉트론
2 퍼셉트론의 과제
3 XOR 문제
8장 다층 퍼셉트론
1 다층 퍼셉트론의 등장
2 다층 퍼셉트론의 설계
3 XOR 문제의 해결
4 코딩으로 XOR 문제 해결하기
9장 오차 역전파에서 딥러닝으로
1 딥러닝의 태동, 오차 역전파
2 활성화 함수와 고급 경사 하강법
3 속도와 정확도 문제를 해결하는 고급 경사 하강법
넷째마당 딥러닝 기본기 다지기
10장 딥러닝 모델 설계하기
1 모델의 정의
2 입력층, 은닉층, 출력층
3 모델 컴파일
4 모델 실행하기
11장 데이터 다루기
1 딥러닝과 데이터
2 피마 인디언 데이터 분석하기
3 판다스를 활용한 데이터 조사
4 중요한 데이터 추출하기
5 피마 인디언의 당뇨병 예측 실행
12장 다중 분류 문제 해결하기
1 다중 분류 문제
2 상관도 그래프
3 원‐핫 인코딩
4 소프트맥스
5 아이리스 품종 예측의 실행
13장 모델 성능 검증하기
1 데이터의 확인과 예측 실행
2 과적합 이해하기
3 학습셋과 테스트셋
4 모델 저장과 재사용
5 k겹 교차 검증
14장 모델 성능 향상시키기
1 데이터의 확인과 검증셋
2 모델 업데이트하기
3 그래프로 과적합 확인하기
4 학습의 자동 중단
15장 실제 데이터로 만들어 보는 모델
1 데이터 파악하기
2 결측치, 카테고리 변수 처리하기
3 속성별 관련도 추출하기
4 주택 가격 예측 모델
다섯째마당 딥러닝 활용하기
16장 이미지 인식의 꽃, 컨볼루션 신경망(CNN)
1 이미지를 인식하는 원리
2 딥러닝 기본 프레임 만들기
3 컨볼루션 신경망(CNN)
4 맥스 풀링, 드롭아웃, 플래튼
5 컨볼루션 신경망 실행하기
17장 딥러닝을 이용한 자연어 처리
1 텍스트의 토큰화
2 단어의 원‐핫 인코딩
3 단어 임베딩
4 텍스트를 읽고 긍정, 부정 예측하기
18장 시퀀스 배열로 다루는 순환 신경망(RNN)
1 LSTM을 이용한 로이터 뉴스 카테고리 분류하기
2 LSTM과 CNN의 조합을 이용한 영화 리뷰 분류하기
3 어텐션을 사용한 신경망
19장 세상에 없는 얼굴 GAN, 오토인코더
1 가짜 제조 공장, 생성자
2 진위를 가려내는 장치, 판별자
3 적대적 신경망 실행하기
4 이미지의 특징을 추출하는 오토인코더
20장 전이 학습을 통해 딥러닝의 성능 극대화하기
1 소규모 데이터셋으로 만드는 강력한 학습 모델
2 전이 학습으로 모델 성능 극대화하기
21장 설명 가능한 딥러닝 모델 만들기
1 딥러닝의 결과를 설명하는 방법
2 설명 가능한 딥러닝의 실행
22장 캐글로 시작하는 새로운 도전
1 캐글 가입 및 대회 선택하기
2 데이터 획득하기
3 학습하기
4 결과 제출하기
5 최종 예측 값 제출하기
심화 학습
심화 학습 1 오차 역전파의 계산법
1 출력층의 오차 업데이트
2 오차 공식
3 체인 룰
4 체인 룰 계산하기
5 가중치 수정하기
6 은닉층의 오차 수정하기
7 은닉층의 오차 계산법
8 델타식
심화 학습 2 파이썬 코딩으로 짜 보는 신경망
1 환경 변수 설정하기
2 파이썬 코드로 실행하는 신경망
부록
부록 A 내 컴퓨터에서 아나콘다로 딥러닝 실행하기
별책부록
별책 부록 1 가장 많이 사용하는 머신 러닝 알고리즘 10
1장 가장 많이 사용하는 머신 러닝 알고리즘 TOP 10
1 세상의 거의 모든 머신 러닝 알고리즘
2 실습을 위한 준비 사항
3 결정 트리
4 랜덤 포레스트
5 가우시안 나이브 베이즈
6 k‐최근접 이웃
7 에이다 부스트
8 이차 판별 분석
9 서포트 벡터 머신
10 서포트 벡터 머신 ‐ RBF 커널
11 보팅
12 배깅
13 여러 알고리즘의 성능을 한눈에 비교하기
별책 부록 2 데이터 분석을 위한 판다스, 92개의 치트키
2장 데이터 분석을 위한 판다스: 92개의 예제 모음
A 데이터 만들기
B 데이터 정렬하기
C 행 추출하기
D 열 추출하기
E 행과 열 추출하기
F 중복 데이터 다루기
G 데이터 파악하기
H 결측치 다루기
I 새로운 열 만들기
J 행과 열 변환하기
K 시리즈 데이터 연결하기
L 데이터 프레임 연결하기
M 데이터 병합하기
N 데이터 가공하기
O 그룹별로 집계하기
previous
next
slide 1 of 23
, currently active
slide 2 of 23
slide 3 of 23
slide 4 of 23
slide 5 of 23
slide 6 of 23
slide 7 of 23
slide 8 of 23
slide 9 of 23
slide 10 of 23
slide 11 of 23
slide 12 of 23
slide 13 of 23
slide 14 of 23
slide 15 of 23
slide 16 of 23
slide 17 of 23
slide 18 of 23
slide 19 of 23
slide 20 of 23
slide 21 of 23
slide 22 of 23
slide 23 of 23
한눈에 보기
별책 부록 1 가장 많이 사용하는 머신 러닝 알고리즘 10
1. 결정 트리
Prev
BUY
Next
신간 소식 구독하기
뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.
Email address