이 코드를 실행하면 다음과 같이 출력됩니다.

    Printing children
    ------------------------------
    [Sequential(
      (0): Conv2d(3, 64, kernel_size=(5, 5), stride=(1, 1))
      (1): ReLU(inplace=True)
      (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    ), Sequential(
      (0): Conv2d(64, 30, kernel_size=(5, 5), stride=(1, 1))
      (1): ReLU(inplace=True)
      (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    ), Sequential(
      (0): Linear(in_features=750, out_features=10, bias=True)
      (1): ReLU(inplace=True)
    )]
    
    
    Printing Modules
    ------------------------------
    [MLP(
      (layer1): Sequential(
        (0): Conv2d(3, 64, kernel_size=(5, 5), stride=(1, 1))
        (1): ReLU(inplace=True)
        (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (layer2): Sequential(
        (0): Conv2d(64, 30, kernel_size=(5, 5), stride=(1, 1))
        (1): ReLU(inplace=True)
        (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      )
      (layer3): Sequential(
        (0): Linear(in_features=750, out_features=10, bias=True)
        (1): ReLU(inplace=True)
      )
    ), Sequential(
      (0): Conv2d(3, 64, kernel_size=(5, 5), stride=(1, 1))
      (1): ReLU(inplace=True)
      (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    ), Conv2d(3, 64, kernel_size=(5, 5), stride=(1, 1)), ReLU(inplace=True), MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), Sequential(
      (0): Conv2d(64, 30, kernel_size=(5, 5), stride=(1, 1))
      (1): ReLU(inplace=True)
      (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    ), Conv2d(64, 30, kernel_size=(5, 5), stride=(1, 1)), ReLU(inplace=True), MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), Sequential(
      (0): Linear(in_features=750, out_features=10, bias=True)
      (1): ReLU(inplace=True)
    ), Linear(in_features=750, out_features=10, bias=True), ReLU(inplace=True)]

    nn.Sequential은 모델의 계층이 복잡할수록 효과가 뛰어납니다.

    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.