코드를 실행하면 모델에 대한 구조(네트워크)를 보여 줍니다.

    Model(
      (all_embeddings): ModuleList(
        (0): Embedding(4, 2)
        (1): Embedding(4, 2)
        (2): Embedding(4, 2)
        (3): Embedding(3, 2)
        (4): Embedding(3, 2)
        (5): Embedding(3, 2)
      )
      (embedding_dropout): Dropout(p=0.4, inplace=False)
      (layers): Sequential(
        (0): Linear(in_features=12, out_features=200, bias=True)
        (1): ReLU(inplace=True)
        (2): BatchNorm1d(200, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (3): Dropout(p=0.4, inplace=False)
        (4): Linear(in_features=200, out_features=100, bias=True)
        (5): ReLU(inplace=True)
        (6): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (7): Dropout(p=0.4, inplace=False)
        (8): Linear(in_features=100, out_features=50, bias=True)
        (9): ReLU(inplace=True)
        (10): BatchNorm1d(50, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (11): Dropout(p=0.4, inplace=False)
        (12): Linear(in_features=50, out_features=4, bias=True)
      )
    )
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.