다음은 사전 훈련된 VGG11 네트워크를 출력한 결과입니다.
VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (4): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (5): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (8): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (9): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (10): ReLU(inplace=True) (11): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (13): ReLU(inplace=True) (14): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (15): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (16): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (17): ReLU(inplace=True) (18): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (19): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (20): ReLU(inplace=True) (21): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (22): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (23): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (24): ReLU(inplace=True) (25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (26): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (27): ReLU(inplace=True) (28): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (avgpool): AdaptiveAvgPool2d(output_size=(7, 7)) (classifier): Sequential( (0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace=True) (2): Dropout(p=0.5, inplace=False) (3): Linear(in_features=4096, out_features=4096, bias=True) (4): ReLU(inplace=True) (5): Dropout(p=0.5, inplace=False) (6): Linear(in_features=4096, out_features=1000, bias=True) ) )