더북(TheBook)

다음은 앞에서 생성한 모델 네트워크의 구조를 보여 줍니다(디코더만 보여 줍니다).

Decoder(
  (decoder_lin): Sequential(
    (0): Linear(in_features=4, out_features=128, bias=True)
    (1): ReLU(inplace=True)
    (2): Linear(in_features=128, out_features=288, bias=True)
    (3): ReLU(inplace=True)
  )
  (unflatten): Unflatten(dim=1, unflattened_size=(32, 3, 3))
  (decoder_conv): Sequential(
    (0): ConvTranspose2d(32, 16, kernel_size=(3, 3), stride=(2, 2))
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
    (3): ConvTranspose2d(16, 8, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
    (4): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (5): ReLU(inplace=True)
    (6): ConvTranspose2d(8, 1, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
  )
)
신간 소식 구독하기
뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.