더북(TheBook)

3. 연관 규칙 분석을 위한 Apriori 알고리즘 적용하고 시각화하기

# 연관 규칙 발견하기: Apriori 적용, 최소 지지도 0.1%, 최소 신뢰도 80%
>>> rules <- apriori(Groceries, parameter = list(supp = 0.001, conf = 0.8))
>>> summary(rules)
set of 410 rules

rule  length distribution (lhs + rhs):sizes
   3   4   5   6
  29 229 140  12

    Min. 1st Qu.  Median    Mean   3rd Qu.    Max.
  3.000    4.000   4.000   4.329     5.000   6.000

summary of quality measures:
   support         confidence            lift             count
Min.   :0.001017   Min.   :0.8000   Min.   : 3.131   Min.   :10.00
1st Qu.:0.001017   1st Qu.:0.8333   1st Qu.: 3.312   1st Qu.:10.00
Median :0.001220   Median :0.8462   Median : 3.588   Median :12.00
Mean   :0.001247   Mean   :0.8663   Mean   : 3.951   Mean   :12.27
3rd Qu.:0.001322   3rd Qu.:0.9091   3rd Qu.: 4.341   3rd Qu.:13.00
Max.   :0.003152   Max.   :1.0000   Max.   :11.235   Max.   :31.00

mining info:
     data ntransactions support confidence
Groceries          9835   0.001        0.8

>>> plot(rules)

 

신간 소식 구독하기
뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.