3. 연관 규칙 분석을 위한 Apriori 알고리즘 적용하고 시각화하기

    # 연관 규칙 발견하기: Apriori 적용, 최소 지지도 0.1%, 최소 신뢰도 80%
    >>> rules <- apriori(Groceries, parameter = list(supp = 0.001, conf = 0.8))
    >>> summary(rules)
    set of 410 rules
    
    rule  length distribution (lhs + rhs):sizes
       3   4   5   6
      29 229 140  12
    
        Min. 1st Qu.  Median    Mean   3rd Qu.    Max.
      3.000    4.000   4.000   4.329     5.000   6.000
    
    summary of quality measures:
       support         confidence            lift             count
    Min.   :0.001017   Min.   :0.8000   Min.   : 3.131   Min.   :10.00
    1st Qu.:0.001017   1st Qu.:0.8333   1st Qu.: 3.312   1st Qu.:10.00
    Median :0.001220   Median :0.8462   Median : 3.588   Median :12.00
    Mean   :0.001247   Mean   :0.8663   Mean   : 3.951   Mean   :12.27
    3rd Qu.:0.001322   3rd Qu.:0.9091   3rd Qu.: 4.341   3rd Qu.:13.00
    Max.   :0.003152   Max.   :1.0000   Max.   :11.235   Max.   :31.00
    
    mining info:
         data ntransactions support confidence
    Groceries          9835   0.001        0.8
    
    >>> plot(rules)

     

    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.