4. 다음 데이터를 파티셔닝한 후 로지스틱 회귀모형 피팅하기
>>> df_credit = read.csv("C:/creditset.csv") # creditset.csv 파일 읽기 >>> dim(df_credit) [1] 2000 6 # 파티셔닝하기 >>> idx = sample(1:nrow(df_credit), 0.7*nrow(df_credit)) >>> train = df_credit[ idx, ] >>> test = df_credit[-idx, ] >>> model = glm( default10yr~income+age+loan, family="binomial", data=train) >>> summary(model) Call: glm(formula = default10yr ~ income + age + loan, family = "binomial", data = train) Deviance Residuals: Min 1Q Median 3Q Max -2.21267 -0.07319 -0.00783 -0.00031 2.77476 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.033e+01 1.029e+00 10.047 <2e-16 *** income -2.554e-04 2.581e-05 -9.896 <2e-16 *** age -3.579e-01 3.208e-02 -11.157 <2e-16 *** loan 1.787e-03 1.623e-04 11.012 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1148.33 on 1399 degrees of freedom Residual deviance: 304.31 on 1396 degrees of freedom AIC: 312.31 Number of Fisher Scoring iterations: 9