4. 다음 데이터를 파티셔닝한 후 로지스틱 회귀모형 피팅하기

    >>> df_credit = read.csv("C:/creditset.csv")   # creditset.csv 파일 읽기
    >>> dim(df_credit)
    [1] 2000   6
    
    # 파티셔닝하기
    >>> idx = sample(1:nrow(df_credit), 0.7*nrow(df_credit))
    >>> train = df_credit[ idx, ]
    >>> test = df_credit[-idx, ]
    
    >>> model = glm( default10yr~income+age+loan, family="binomial", data=train)
    >>> summary(model)
    Call:
    glm(formula = default10yr ~ income + age + loan, family = "binomial",
        data = train)
    
    Deviance Residuals:
         Min        1Q    Median        3Q      Max
    -2.21267  -0.07319  -0.00783  -0.00031  2.77476
    
    Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
    (Intercept)  1.033e+01  1.029e+00   10.047   <2e-16 ***
    income      -2.554e-04  2.581e-05   -9.896   <2e-16 ***
    age         -3.579e-01  3.208e-02  -11.157   <2e-16 ***
    loan         1.787e-03  1.623e-04   11.012   <2e-16 ***
    ---
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
    (Dispersion parameter for binomial family taken to be 1)
    
        Null deviance: 1148.33 on 1399 degrees of freedom
    Residual deviance:  304.31 on 1396 degrees of freedom
    AIC: 312.31
    Number of Fisher Scoring iterations: 9
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.