2. CNN 구성하기(14x14 → 7x7)

    >>> model = models.Sequential()
    >>> model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
    >>> model.add(layers.MaxPooling2D((2, 2)))
    >>> model.add(layers.Conv2D(64, (3, 3), activation='relu'))
    >>> model.add(layers.MaxPooling2D((2, 2)))
    >>> model.add(layers.Conv2D(64, (3, 3), activation='relu'))

    3. 결과층까지 모형 구성하기(최종 출력값에서 출력 64개를 입력 값으로 받아서 0~9 레이블인 10개의 출력하기)

    >>> model.add(layers.Flatten())
    >>> model.add(layers.Dense(64, activation='relu'))
    >>> model.add(layers.Dense(10, activation='softmax'))
    >>> model.summary( )
    Model: "sequential_2"
    _________________________________________________________________
    Layer (type)                 Output Shape           Param #
    =======================================
    conv2d (Conv2D)              (None, 26, 26, 32)      320
    _________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 13, 13, 32)      0
    _________________________________________________________________
    conv2d_1 (Conv2D)            (None, 11, 11, 64)      18496
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)        0
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 3, 3, 64)        36928
    _________________________________________________________________
    flatten_1 (Flatten)          (None, 576)             0
    _________________________________________________________________
    dense_4 (Dense)              (None, 64)              36928
    _________________________________________________________________
    dense_5 (Dense)              (None, 10)              650
    ===================================
    Total params: 93,322
    Trainable params: 93,322
    Non-trainable params: 0
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.