4. 에포크를 5로 지정하여 학습하기
>>> model.compile(optimizer='adam', >>> loss='sparse_categorical_crossentropy', >>> metrics=['accuracy']) >>> model.fit(train_images, train_labels, epochs=5) Train on 60000 samples Epoch 1/5 60000/60000 [==============================] - 49s 818us/sample - loss: 0.1377 - accuracy: 0.9566 Epoch 2/5 60000/60000 [==============================] - 47s 777us/sample - loss: 0.0449 - accuracy: 0.9858 Epoch 3/5 60000/60000 [==============================] - 40s 670us/sample - loss: 0.0320 - accuracy: 0.9902 Epoch 4/5 60000/60000 [==============================] - 39s 642us/sample - loss: 0.0247 - accuracy: 0.9919 Epoch 5/5 60000/60000 [==============================] - 50s 826us/sample - loss: 0.0186 - accuracy: 0.9938 10000/1 - 3s - loss: 0.0266 - accuracy: 0.9845
5. 평가하기
>>> test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) >>> print(test_acc) 0.9845 # 정분류율이 98.45%로 개선