코드 3-38 모델 튜닝

    db = DBSCAN(eps=0.0375, min_samples=50).fit(X_principal)
    labels1 = db.labels_
    
    colours1 = {}
    colours1[0] = 'r'
    colours1[1] = 'g'
    colours1[2] = 'b'
    colours1[3] = 'c'
    colours1[4] = 'y'
    colours1[5] = 'm'
    colours1[-1] = 'k'
    
    cvec = [colours1[label] for label in labels1]
    colors1 = ['r', 'g', 'b', 'c', 'y', 'm', 'k']
    
    r = plt.scatter(
        X_principal['P1'], X_principal['P2'], marker='o', color=colors1[0])
    g = plt.scatter(
        X_principal['P1'], X_principal['P2'], marker='o', color=colors1[1])
    b = plt.scatter(
        X_principal['P1'], X_principal['P2'], marker='o', color=colors1[2])
    c = plt.scatter(
        X_principal['P1'], X_principal['P2'], marker='o', color=colors1[3])
    y = plt.scatter(
        X_principal['P1'], X_principal['P2'], marker='o', color=colors1[4])
    m = plt.scatter(
        X_principal['P1'], X_principal['P2'], marker='o', color=colors1[5])
    k = plt.scatter(
        X_principal['P1'], X_principal['P2'], marker='o', color=colors1[6])
    
    plt.figure(figsize=(9,9))
    plt.scatter(X_principal['P1'], X_principal['P2'], c=cvec)
    plt.legend((r, g, b, c, y, m, k),
              ('Label 0', 'Label 1', 'Label 2', 'Label 3', 'Label 4', 'Label 5', 'Label -1'),
              scatterpoints=1,
              loc='upper left',
              ncol=3,
              fontsize=8)
    plt.show()
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.