다음과 같이 ResNet50 네트워크가 출력됩니다. ResNet50 네트워크는 유지하고, 여기에 추가 계층을 생성하여 사용할 예정입니다.

    Model: "resnet50"
    ______________________________________________________________________________________
    Layer (type)                     Output Shape         Param #    Connected to
    ======================================================================================
    input_1 (InputLayer)             [(None, 224, 224, 3) 0
    ______________________________________________________________________________________
    conv1_pad (ZeroPadding2D)        (None, 230, 230, 3)  0          input_1[0][0]
    ______________________________________________________________________________________
    conv1_conv (Conv2D)              (None, 112, 112, 64) 9472       conv1_pad[0][0]
    ______________________________________________________________________________________
    conv1_bn (BatchNormalization)    (None, 112, 112, 64) 256        conv1_conv[0][0]
    ______________________________________________________________________________________
    ...(중간 생략)...
    ______________________________________________________________________________________
    conv5_block3_out (Activation)    (None, 7, 7, 2048)   0          conv5_block3_add[0][0]
    ______________________________________________________________________________________
    avg_pool (GlobalAveragePooling2  (None, 2048)         0          conv5_block3_out[0][0]
    ______________________________________________________________________________________
    predictions (Dense)              (None, 1000)         2049000    avg_pool[0][0]
    ======================================================================================
    Total params: 25,636,712
    Trainable params: 25,583,592
    Non-trainable params: 53,120
    ______________________________________________________________________________________
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.