더북(TheBook)

5.5.2 그래프 신경망

그래프 신경망(Graph Neural Network, GNN)은 그래프 구조에서 사용하는 신경망을 의미합니다. 그래프 데이터에 대한 표현은 다음과 같이 두 단계로 이루어집니다.

 

1단계. 인접 행렬(adjacency matrix)

그림 5-51의 왼쪽과 같은 네트워크가 있을 때 노드 n개를 n×n 행렬(matrix)로 표현합니다.

이렇게 생성된 인접 행렬 내의 값은 ‘Aijij의 관련성 여부’를 만족하는 값으로 채워 줍니다.

즉, 인접 행렬 과정은 컴퓨터가 이해하기 쉽게 그래프로 표현하는 과정이라고 할 수 있습니다.

 

2단계. 특성 행렬(feature matrix)

각 입력 데이터에서 이용할 특성을 선택합니다( RGB 값 세 개, 전치(transpose) 한 개 등).

특성 행렬에서 각 행은 선택된 특성에 대해 각 노드가 갖는 값을 의미합니다( 첫 번째 행은 첫 번째 노드의 특성 값).

 

▲ 그림 5-51 특성 행렬

즉, 특성 행렬 과정을 거쳐 그래프 특성(graph feature)이 추출됩니다.

신간 소식 구독하기
뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.