코드 6-9 모델 생성

    num_classes = 2 ------ 개와 고양이 두 가지에 대해 분류
    class AlexNet(Sequential):
        def __init__(self, input_shape, num_classes):
            super().__init__()
            self.add(Conv2D(96, kernel_size=(11,11), strides= 4,
                            padding='valid', activation='relu',
                            input_shape=input_shape,
                            kernel_initializer='he_normal')) ------ ①
            self.add(MaxPooling2D(pool_size=(3,3), strides=(2,2),
                                  padding='valid', data_format='channels_last')) ------ ②
    
            self.add(Conv2D(256, kernel_size=(5,5), strides=1,
                            padding='same', activation='relu',
                            kernel_initializer='he_normal'))
            self.add(MaxPooling2D(pool_size=(3,3), strides=(2,2),
                                  padding='valid', data_format='channels_last'))
    
            self.add(Conv2D(384, kernel_size=(3,3), strides=1,
                            padding='same', activation='relu',
                            kernel_initializer='he_normal'))
    
            self.add(Conv2D(384, kernel_size=(3,3), strides=1,
                            padding='same', activation='relu',
                            kernel_initializer='he_normal'))
    
            self.add(Conv2D(256, kernel_size=(3,3), strides=1,
                            padding='same', activation='relu',
                            kernel_initializer='he_normal'))
    
            self.add(MaxPooling2D(pool_size=(3,3), strides=(2,2),
                                  padding='valid', data_format='channels_last'))
    
            self.add(Flatten())
            self.add(Dense(4096, activation='relu'))
            self.add(Dense(4096, activation='relu'))
            self.add(Dense(1000, activation='relu'))
            self.add(Dense(num_classes, activation='softmax'))
    
            self.compile(optimizer=tf.keras.optimizers.Adam(0.001),
                         loss='categorical_crossentropy',
                         metrics=['accuracy'])
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.