다음은 출력된 LSTM 모델의 구조입니다.

    Model: "sequential_3"
    ________________________________________________________________
    Layer (type)                 Output Shape              Param #
    ================================================================
    embedding_3 (Embedding)      (None, 200, 128)          1280000
    ________________________________________________________________
    bidirectional (Bidirectional (None, 128)               98816
    ________________________________________________________________
    dropout (Dropout)            (None, 128)               0
    ________________________________________________________________
    dense_3 (Dense)              (None, 1)                 129
    ================================================================
    Total params: 1,378,945
    Trainable params: 1,378,945
    Non-trainable params: 0
    ----------------------------------------------------------------

    모델에 대한 평가를 위해 정확도(accuracy)와 오차(loss)를 확인해 보겠습니다.

    코드 7-26 모델 평가

    loss, acc = model.evaluate(x_train, y_train, batch_size=384, verbose=1)
    print('Training accuracy', model.metrics_names, acc)
    print('Training accuracy', model.metrics_names, loss)
    loss, acc = model.evaluate(x_test, y_test, batch_size=384, verbose=1)
    print('Testing accuracy', model.metrics_names, acc)
    print('Testing accuracy', model.metrics_names, loss)
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.