다음은 model.summary()를 실행해 얻은 회귀 모델 수행의 결과 요약이다.

    결과

    OLS Regression Results 
    ============================================================================== 
    Dep. Variable:             port_excess    R-squared:                     0.005 
    Model:                             OLS    Adj.R-squared:                -0.001 
    Method:                  Least Squares    F-statistic:                  0.8470 
    Date:                 Thu, 12 Nov 2020    Prob (F-statistic ):           0.469 
    Time:                         05:20:39    Log-Likelihood:              -472.48 
    No. Observations:                  473    AIC:                           953.0 
    Df Residuals:                      469    BIC:                           969.6 
    Df Model:                            3 
    Covariance Type:             nonrobust 
    ============================================================================== 
                       coef   std err           t     P>|t|     [0.025      0.975] 
    ------------------------------------------------------------------------------ 
    Intercept       -0.3111     0.031     -10.058     0.000     -0.372      -0.250 
    mkt_excess       0.0081     0.007       1.110     0.268     -0.006       0.022 
    SMB              0.0101     0.011       0.944     0.346     -0.011       0.031 
    HML              0.0056     0.011       0.508     0.612     -0.016       0.027 
    ============================================================================== 
    Omnibus:                       830.537    Durbin-Watson:                 1.671 
    Prob(Omnibus ):                  0.000    Jarque-Bera (JB ):        432316.055 
    Skew:                           10.778    Prob(JB ):                      0.00 
    Kurtosis:                      149.530    Cond. No.                       4.78 
    ============================================================================== 
    
    Warnings: 
    [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
    신간 소식 구독하기
    뉴스레터에 가입하시고 이메일로 신간 소식을 받아 보세요.